ОКП 42 1510

Датчик-газоанализатор стационарный

ДГС ЭРИС-230

Модификация 2

Руководство по эксплуатации АПНС.413216.230-02 РЭ

СОГЛАСОВАНО

Заместитель директора по техническим вопросам ООО, «ЭРИС»

<u>//</u> А.В. Кривошеев

Начальник производства

ООО «ЭРИС»

А.Н. Климин

Содержание Введение
1 Назначение изделия
2 Комплектность
3 Устройство и работа
4 Обеспечение взрывозащищенности
5 Маркировка и пломбирование
6 Упаковка
7 Указание мер безопасности
8 Особые условия применения
9 Использование по назначению
Приложение А Диапазоны измерений объемной доли компонентов и пределы допускаемой
основной погрешности ДГС ЭРИС-230
Приложение Б Схемы подключения газоанализатора ДГС ЭРИС-230
Приложение В Чертеж средств взрывозащиты
Приложение Г Габаритный чертеж газоанализатора
Приложение Д Номинальная статическая функция преобразования
Приложение Е Инструкция по монтажу ДГС ЭРИС-230
Приложение Ж Установка нуля и калибровка газоанализатора
Приложение И Газы, определяемые сенсорами горючих газов (ИК)

	Изм.	Лист	№ докум.	Подпись	Дата	
	Разраб. Провер.		Климни			
			Чунарев			
	Н. Ко	нтр.	Кречетов			
	Утв.		Юрков			

Подпись и дата

Инв. № дубл.

Взам. инв. №

Подпись и дата

Инв. № подл.

АПНС.413216.230-02 РЭ

Датчик-газоанализатор стационарный ДГС ЭРИС-230

Пит		Лист	Листов
		2	24

Настоящее руководство по эксплуатации (РЭ) предназначено для изучения устройства, конструкции и принципа действия датчика-газоанализатора стационарного ДГС ЭРИС-230 модификации 2 (в дальнейшем – ДГС ЭРИС-230, газоанализатор). РЭ содержит основные технические данные, рекомендации по техническому обслуживанию, а также другие сведения, необходимые для правильной эксплуатации, ремонта и хранения газоанализатора.

Область применения – взрывоопасные зоны согласно маркировке взрывозащиты 1Exd[ib]IIBT6 X, в которых возможно образование взрывоопасных смесей газов и паров с воздухом.

Принцип измерений – инфракрасная абсорбция (оптический), электрохимический, термокаталитический.

Метод пробоотбора – диффузионный.

Рабочее положение газоанализатора в пространстве – произвольное.

Режим работы – непрерывный.

Анализируемая среда – воздух рабочей зоны по ГОСТ 12.1.005-88.

Диапазоны измерений объемной доли компонентов и пределы допускаемой основной по грешности ДГС ЭРИС-230 приведены в Приложении А. Газы, определяемые сенсорами горючих газов, приведены в Приложении И.

Газоанализатор подлежит поверке.

Интервал между поверками:

- -ДГС ЭРИС-230ИК (оптический) 3 года;
- –ДГС ЭРИС-230ЭЛ (электрохимический) 1 год.

Сокращения и обозначения, принятые в настоящем РЭ:

ГСО-ПГС – государственный стандартный образец – поверочная газовая смесь;

НКПР – нижний концентрационный предел распространения пламени;

РЭ – руководство по эксплуатации.

№ подл. Подписьи дата Взам. инв. № Инв. № дубл. Подпись и дата

Инв.

Изм.	Лист	№ докум.	Подпись	Дата

АПНС.413216.230-02 РЭ

1.1 Газоанализатор предназначен для автоматического, непрерывного измерения концентрации взрывоопасных углеводородных газов, токсичных газов, кислорода или диоксида углерода в окружающей атмосфере и/или в технологических газовых средах.

Газоанализатор соответствует требованиям ГОСТ 12.2.007.0-75, ГОСТ 13320-81, ГОСТ 27540-87, ГОСТ 26.011-80, ГОСТ Р 52931-2008.

Область применения – взрывоопасные зоны помещений и вблизи наружных технологических установок, в которых возможно образование взрывоопасных смесей газов и паров с воздухом, согласно ГОСТ 30852.1-2002, ГОСТ 30852.9-2002, ГОСТ 30852.10-2002, ГОСТ 30852.11-2002, ГОСТ 30852.13-2002 и маркировке взрывозащиты 1Exd[ib]IIBT6 X.

- 1.2 Газоанализатор предназначен для стационарной установки. Газоанализатор обеспечивает вывод информации об измеренной величине концентрации по одному из интерфейсов:
 - -встроенному светодиодному индикатору;
 - -цифровому последовательному интерфейсу RS-485 MODBUS[®];
- -токовой петле 4-20мA (номинальная статическая функция преобразования описана в Приложении Д);
 - -3 реле (Порог 1, Порог 2, Авария).
 - -Протокол HART.

Подпись и дата

дубл.

Инв. №

ૃ

Взам. инв.

Подписьи дата

№ подл.

Инв.

Газоанализатор обеспечивает индикацию текущего значения объемной доли определяемого компонента, наличия напряжения питания, превышения диапазона измерения и результатов самодиагностики.

Индикация описана в таблице 1.

Таблица 1 – Световая индикация ДГС -230.

		Светод	циоды			Токо- Контакты р		нтакты р	реле	
Режим	красно-	оранже-	синего зелёного		Индикатор	вый	«Диагн»	«Порог	«Порог	
	го цвета	вого	цвета	цвета	тидикатор	выход		1»	2»	
		цвета				(мА)				
1. Нет питания	-	-	-	-	-	-	разомкн	разомкн	разомкн	
2. Измерение и										
контроль уста-	выкл.	выкл.		вкл	значение	4 ÷ 20	замкн	разомкн	разомкн	
вок, штатный					концентрации			•		
режим работы										
3. Превышен					значение					
Порог 1	вкл.	выкл.		вкл.	концентрации,	4 ÷ 20	замкн	замкн	разомкн	
					в первой позиции					
					мигает символ 'L'					

 Изм.
 Лист
 № докум.
 Подпись
 Дата

АПНС.413216.230-02 РЭ

Лист

		Светод	циоды			Токо-		нтакты р	еле
Режим	красно-	оранже-	синего	инего зелёного Индикатор	вый	«Диагн»	«Порог	«Поро	
	го цвета	вого	цвета	цвета	iiiidiiiidi	выход		1»	2»
		цвета				(мА)			
4. Превышен Порог 2	мигает	выкл.		вкл.	значение концентрации, в первой позиции мигает символ 'Н'	4 ÷ 20	замкн	замкн	замк
5. Превышен диапазон измерения	мигает	выкл.		мигает	мигает значение концентрации (отображается значение ≥ 100% НКПР)	22 ±1,0	замкн	замкн	замк
б. Прогрев	выкл.	мигает (защита отключе- на)		1. выкл» при самотес- тирова- нии 2. «вкл» по оконча- нии само- тестирова ния	надпись «ПРОГРЕВ»	1 ±0,4	замкн	разомкн	разом
7. Неисправ- ность	выкл.	вкл. (защита отключе- на)		выкл.	отображается код неисправности с мигающим символом 'E' в первой позиции	2 ±0,4	разомкн	разомкн	разом
8. Приём или передача дан- ных по RS485			вкл.						
9. Реакция на поднесённый магнит				кратко- времен- ное выкл.					
Примечани 1) «» - во 2) «-» - о	озможно ј	побое знач индикаци							

Лист

5

АПНС.413216.230-02 РЭ

Подпись и дата

Взам. инв. № | Инв. № дубл.

Подписьи дата

Инв. № подл.

Изм.

Лист

№ докум.

Дата

Подпись

Подпись и дата публ. Ž Инв. ૃ Взам. инв. Подписьи дата подл. Ž

Инв.

- 1.3 Условия эксплуатации:
- -температура окружающей среды:
- · ДГС ЭРИС-230ИК (оптический)

- от минус 60 до 65^{0} С;
- · ДГС ЭРИС-230ЭЛ (электрохимический)
- от минус 60 до 65^{0} С;
- -относительная влажность не более 98 %;
- -атмосферное давление от 84 до 106,7 кПа;
- -содержание механических и агрессивных примесей в контролируемой среде не должно превышать уровня ПДК согласно ГОСТ 12.1.005-88.
- 1.4 По устойчивости и прочности к воздействию температуры и влажности окружающего воздуха датчики газоанализаторы ДГС соответствуют исполнению ДЗ по ГОСТ Р 52931-2008.
 - 1.5 Технические характеристики

Вид и уровень взрывозащиты газоанализатора соответствует 1Exd[ib]IIBT6 X.

Степень защиты человека от поражения электрическим током газоанализатора соответствует классу III по ГОСТ 12.2.007.0-75.

Степень защиты от проникновения воды, пыли и посторонних твердых частиц газоанализатора соответствует коду IP67 по ГОСТ 14254-96 (МЭК 529-89).

Габаритные размеры газоанализатора, мм, не более: 150×130×225.

Масса газоанализатора не более 1,7 кг.

Напряжение питания газоанализатора, В: 12-36 постоянного тока.

Мощность, потребляемая газоанализатором, Вт:

- · ДГС ЭРИС-230ИК (оптический) не более 1;
- · ДГС ЭРИС-230ЭЛ (электрохимический) не более 1;
- · ДГС ЭРИС-230ТК (термокаталитический) не более 1.

Предел времени прогрева газоанализатора, минут:

- · ДГС ЭРИС-230ИК (оптический) не более 2;
- · ДГС ЭРИС-230ЭЛ (электрохимический) не более 10;
- · ДГС ЭРИС-230ТК (термокаталитический) не более 10.

Время установления выходного сигнала газоанализатора по уровню 0,9, не более:

- · ДГС ЭРИС-230ИК (оптический)— 5ceк;
- · ДГС ЭРИС-230ИК (определение концентраций CO₂)— 5сек.
- · ДГС ЭРИС-230ЭЛ (электрохимический)— 45ceк
- · ДГС ЭРИС-230ТК (термокаталитический)— 10сек

Сопротивление нагрузки цепи токовой петли не более 500 Ом.

Предел допускаемого интервала времени работы газоанализатора без корректировки выходного сигнала:

Изм.	Лист	№ докум.	Подпись	Дата

- · ДГС ЭРИС-230ЭЛ (электрохимический) не менее 6 месяцев;
- · ДГС ЭРИС-230ТК (термокаталитический) не менее 6 месяцев.

Газоанализатор устойчив к воздействию вибраций в диапазоне частот от 10 до 30 Гц с полным смещением 1 мм и в диапазоне частот от 31 до 150 Гц с амплитудой ускорения 19.6 M/c^2 (2g) по ГОСТ Р 52931-2008.

Газоанализатор устойчив к воздействию радиочастотного электромагнитного поля в диапазоне от 80 до 1000 МГц (излучение источников общего применения), а также в диапазоне от 800 до 960 МГц и от 1,4 до 6,0 ГГц (излучение цифровых радиотелефонов и других радиочастотных излучающих устройств) по ГОСТ Р 51317.4.3-99, напряженность электромагнитного поля до 3 В/м.

Газоанализатор в транспортной таре устойчив к воздействию внешних факторов в пределах:

- –температура окружающего воздуха от минус 60 до 65 0 C;
- -относительная влажность окружающего воздуха от 30 до 98%;
- -атмосферное давление от 84 до 106,7 кПа.

Средняя наработка на отказ газоанализатора — не менее 70000 часов для модификации с ИК сенсором и не менее 35000 часов для модификации с электрохимическим и термокаталитическим сенсорами. Критерий отказа — неустранимый выход основной погрешности за допустимые пределы, невыполнение функционального назначения.

Полный средний срок службы газоанализатора – 12 лет.

[нв. № подл. Подписьи дата Взам. инв. № Инв. № дубл. Подпись и дата

Изм.	Лист	№ локум.	Полпись	Лата

2 Комплектность

2.1 Комплект поставки газоанализатора приведен в таблице 2.

Таблица 2 – Комплект поставки датчиков-газоанализаторов ДГС ЭРИС-230

Наименование	Обозначение	Количество, шт.
Датчик-газоанализатор ДГС ЭРИС-230	АПНС.424321.230	1
Магнитный ключ	-	1
Паспорт	АПНС.424321.230-00 ПС	1
Руководство по эксплуатации	АПНС.424321.230-02 РЭ	11)
Методика поверки	МП 116-221-2014	11)
Калибровочная насадка	-	1 ²⁾
Козырек защиты от погодных осадков и солнца	-	1 ²⁾
Комплект для монтажа на трубу	-	1 ²⁾
Комплект для монтажа в воздуховоде	-	1 ²⁾
Кабельный ввод	-	1 ²⁾
Компьютерная программа		1 ²⁾

Примечания

 $^{^{2)}}$ По отдельному заказу.

Инв. № подл.	Изм.	Лист	№ докум.	Подпись	Дата	АПНС.413216.230-02 РЭ	Лист
Подписьи дата							
Взам. инв. №							
Инв. № дубл.							
Подпись и д							

 $^{^{1)}}$ Один экземпляр на партию, но не менее одного экземпляра в один адрес.

подл.

Инв. №

3 Устройство и работа

3.1 Принцип действия газоанализатора с оптическим сенсором

Принцип действия основан на избирательном поглощении инфракрасного излучения молекулами газа в области длин волн 3,31 мкм.

Инфракрасное излучение светодиода проходит через измерительную газовую кювету диффузионного типа и попадает на 2 фотоприемника, один из которых регистрирует только излучение в диапазоне длин волн 3,31 мкм, а другой в диапазоне длин волн от 3,5 до 3,7 мкм. Исследуемый газ, находящийся в кювете, поглощает излучение рабочей длины волны ($\lambda_p = 3,31$ мкм) и не влияет на излучение опорной длины волны ($\lambda_o = 3,65$ мкм). Амплитуда I_p рабочего сигнала фотоприемника изменяется при изменении концентрации в соответствии с выражением:

$$\frac{I_{p}}{I_{o}} = \exp\{-\left[K(\lambda_{p}) - K(\lambda_{o})\right] \cdot C \cdot L\}, \tag{1}$$

где $K(\lambda_i)$ –коэффициент поглощения на заданной длине волны;

L –оптическая длина кюветы;

С-измеряемая концентрация газа;

 I_{p} , I_{o} —амплитуда сигналов на фотоприемнике.

Искомая концентрация газа находится по формуле:

$$C = -\frac{\ln^{I_p}/I_o}{L \cdot [K(\lambda_p) - K(\lambda_o)]}$$
(2)

Используемый дифференциальный двухволновой метод регистрации позволяет устранить влияние паров воды, загрязнения оптических элементов и прочих неселективных помех, одинаково влияющих на оба канала.

3.2 Принцип действия газоанализатора с электрохимическим сенсором

Электрохимический сенсор состоит из электродов и электролита. Анализируемый газ вступает в химическую реакцию с электролитом, заполняющим ячейку. В результате в растворе возникают заряженные ионы, между электродами начинает протекать электрический ток, пропорциональный концентрации анализируемого компонента в пробе.

3.3 Устройство и конструкция

3.4 Газоанализатор состоит из сенсора и трансмиттера. В сенсоре происходит вычисление измеренной концентрации газа по одному из вышеописанных методов и преобразование полученного значения в аналоговый сигнал токовой петли 4-20мA, а также данные интерфейсов HART (накладывается «поверх» сигнала токовой петли) и UART. Данные интерфейса HART и сигнал токовой петли передаются трансмиттером на внешние линии газоанализатора без изменений, а данные UART преобразуются в данные интерфейса RS485

Изм.	Лист	№ докум.	Подпись	Дата

MODBUS®, отображаются на встроенном цифровом четырёхсимвольном дисплее, а также используются для формирования выходных сигналов двух реле превышения порогов по концентрации и реле аварии. Режим работы газоанализатора отображается также с помощью 4-х индикаторных светодиодов (см. таблицу 1). Кроме того, в трансмиттере формируются все напряжения питания, необходимые как для его собственного функционирования, так и для работы сенсора. Здесь же расположены магнитные датчики, посредством которых можно установить «0» и произвести масштабирование шкалы сенсора, а также клеммные колодки для присоединения проводников внешних кабелей. Сенсоры имеют встроенную флэш-память с градуировочными коэффициентами, которые автоматически считываются при подключении к трансмиттеру микропроцессором, что исключает необходимость индивидуальной калибровки (градуировки) преобразователей с трансмиттером.

Конструктивно трансмиттер выполнен в металлическом корпусе с окном для цифрового дисплея и индикаторных светодиодов и кабельными вводами. Совместно с установленным сенсором этот корпус представляет из себя взрывонепроницаемую оболочку, внутри которой расположены все устройства газоанализатора за исключением газового сенсора МИП ВГ-02, который подключён к остальным устройствам газоанализатора по искробезопасным цепям.

Подпись и дата					
Инв. № дубл.					
Взам. инв. №					
Подписьи дата					
нв. № подл.			АПНС.413216.230-02 РЭ	Лист	

Лист

№ докум.

Подпись

Дата

10

- 4.2 Взрывозащищенность газоанализатора достигнута за счет:
- заключения токоведущих частей газоанализатора во взрывонепроницаемую оболочку с щелевой взрывозащитой в местах сопряжения деталей и узлов взрывонепроницаемой оболочки, способной выдержать давление взрыва и исключить передачу взрыва в окружающую взрывоопасную среду. Сопряжения деталей на чертеже обозначены словом «Взрыв» с указанием допустимых параметров взрывозащиты для резъбовых взрывонепроницаемых соединений: число полных неповрежденных витков резъбы, осевой длины и шага резьбы;
 - использования для подвода внешних цепей взрывозащищённого кабельного ввода;
- предохранения от самоотвинчивания всех элементов, крепящих детали,
 обеспечивающих взрывозащиту газоанализатора;
 - механической прочностью оболочки газоанализатора;
- защиты от коррозии консистентной смазкой всех поверхностей, обозначенных словом "Взрыв";
 - ограничения температуры нагрева наружных частей газоанализатора (85 °C);
- вид взрывозащиты "искробезопасная электрическая цепь" достигается за счет ограничения параметров электрических цепей барьера искрозащиты модуля питания и интерфейса оптического датчика до искробезопасных значений;
 - обеспечения необходимых электрических зазоров и путей;
- наличия предупредительной надписи на крышке корпуса газоанализатора "Открывать, отключив от сети".

Знак X, стоящий после маркировки взрывозащиты, означает, что при эксплуатации газоанализатора следует соблюдать особые условия. Особые условия – раздел 8 настоящего РЭ.

Инв. № подл. Подписьи дата Взам. инв. № Инв. № дубл. Подпись и дата

Изм. Лист № докум. Подпись Дата

АПНС.413216.230-02 РЭ

5 Маркировка и пломбирование

- 5.1 Маркировка газоанализатора содержит:
 - -наименование и товарный знак предприятия-изготовителя;
 - -наименование и обозначение газоанализатора;
 - год изготовления;
 - -номер газоанализатора по системе нумерации предприятия-изготовителя;
 - -диапазон измерений;
 - -знак утверждения типа по ПР 50.2.009;
 - -обозначение взрывозащиты;
 - -предупредительную надпись "Открывать, отключив от сети";
 - -код IP;
 - -температуру эксплуатации;
 - -номер сертификата;
 - -знак заземления.

6 Упаковка

- 6.1 Газоанализатор и эксплуатационная документация уложены в коробку из картона. Картонная коробка с газоанализатором оклеена полиэтиленовой лентой с липким слоем.
 - 6.2 Срок защиты без переконсервации 1 год.

Подпись и д	
Инв. № дубл.	
Взам. инв. №	
Подписьи дата	
№ подл.	
[нв. №	Ĺ

Изм.	Лист	№ докум.	Подпись	Дата

7 Указание мер безопасности

- 7.1 К работе с газоанализатором допускаются лица, прошедшие инструктаж по технике безопасности в установленном порядке и изучившие настоящее РЭ.
- 7.2 Должны соблюдаться "Правила безопасности в газовом хозяйстве", утвержденные Госгортехнадзором и "Правила технической эксплуатации электроустановок потребителей", утвержденные Госэнергонадзором.
- 7.3 При работе с баллонами, содержащими поверочные газовые смеси под давлением, необходимо соблюдать требования техники безопасности согласно "Правилам устройства и безопасной эксплуатации сосудов, работающих под давлением", утвержденным Госгортехнадзором России от 18.04.95.
- 7.4 Обслуживающему персоналу рекомендуется пройти подготовку на предприятии-изготовителе.
- 7.5 Ремонт газоанализатора должен проводиться только персоналом предприятияизготовителя или лицами, уполномоченными предприятием-изготовителем для проведения ремонтных работ.
- 7.6 Перед включением газоанализатора проверяйте отсутствие внешних повреждений газоанализатора, сохранность пломб, наличие всех элементов крепления.
- 7.7 Запрещается эксплуатировать газоанализатор, имеющий механические повреждения корпуса или нарушения пломбировки
- 7.8 Корпус газоанализатора должен быть заземлен. Для заземления газоанализатора предусмотрена винт заземления.
- 7.9 Не допускается сбрасывание ГСО-ПГС в атмосферу рабочих помещений при настройке и поверке газоанализатора.

Инв. № подл. Подписьи дата Взам. инв. № Инв. № дубл. Подпись и дата

 Изм.
 Лист
 № докум.
 Подпись
 Дата

АПНС.413216.230-02 РЭ

Лист

8 Особые условия применения

- 8.1 Особые условия применения, обозначенные знаком X после маркировки взрывозащиты, включают в себя следующие требования:
- эксплуатацию и монтаж газоанализаторов должны осуществлять лица, знающие правила
 эксплуатации электроустановок во взрывоопасных зонах, изучившие руководство по
 эксплуатации, аттестованные и допущенные к работе с этими изделиями;
 - прокладка кабелей во взрывоопасной зоне в соответствии с ПУЭ;
 - при эксплуатации газоанализатор следует оберегать от ударов и падений;
 - запрещается пользоваться газоанализаторами с поврежденным корпусом или пломбой;
- монтаж и подключение газоанализаторов должен производиться при отключенном напряжении электропитания;
- подключение цепей питания и цепей интерфейсов газоанализатора ДГС ЭРИС-230 должно производиться в соответствии с Приложением Б, при этом напряжения в цепях не должны превышать значений Um:
 - для цепей питания U_m=36 B;
 - для цепей интерфейса RS-485 MODBUS U_m =12 B.

Подпись и дата							
Инв. № дубл.							
Взам. инв. №							
Подписьи дата							
подл.							
Инв. № подл.						АПНС.413216.230-02 РЭ	Лист
Ив	Изм.	Лист	№ докум.	Подпись	Дата		14

9.1 Общие требования

К работе с газоанализатором допускаются лица, знающие правила эксплуатации электроустановок во взрывоопасных зонах, изучившие руководство по эксплуатации, аттестованные и допущенные к работе с этими изделиями.

9.2 Подготовка к работе

Если газоанализатор находился в транспортной упаковке при отрицательной температуре, выдержите его при температуре (10–35) 0 C не менее часа.

Снимите упаковку. Проверьте комплектность, наличие пломб, маркировки взрывозащиты, убедитесь в отсутствии механических повреждений.

9.3 Обеспечение взрывозащищенности при монтаже

Монтаж газоанализатора на объекте должен производиться в соответствии с утвержденным в установленном порядке проектом размещения системы контроля, в составе которой используется газоанализатор.

При монтаже необходимо руководствоваться:

- главой 7.3. «Правил устройства электроустановок» (ПУЭ)
- главой 3.4. «Правил эксплуатации электроустановок потребителей» (ПЭЭП)
- «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).

Электрические соединения должны соответствовать приложению Б.

Монтаж газоанализатора должен осуществляться в соответствии с документацией предприятия-изготовителя.

9.4 Порядок работы

Обеспечение взрывозащищенности при эксплуатации.

При эксплуатации необходимо руководствоваться:

- главой 3.4. «Правил эксплуатации электроустановок потребителей» (ПЭЭП)
- «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).

Газоанализатор должен иметь наружное заземляющее устройство

Подключение газоанализатора

Подключите цепи питания и интерфейса в соответствии с Приложением Б.

Подключение производить в соответствии с инструкцией Приложение Ж.

После включения газоанализатора в помещении с атмосферой, не содержащей примесей горючих газов, должна выполняться сигнализация и индикация в соответствии с таблицей 1.

После подачи внешнего питания на газоанализатор в течение двух минут на его аналоговом выходе присутствует ток 2 мА (при использовании аналогового выхода газоанализатора)

Изм.	Лист	№ докум.	Подпись	Дата

АПНС.413216.230-02 РЭ

Лист

Подпись и дата

№ Инв. № дубл.

Подписьи дата

Взам. инв.

Инв. № подл.

или 0 значение концентрации при использовании цифрового интерфейса. По истечении 2-х минут газоанализатор автоматически контролирует содержание определяемых газов в воздухе рабочей зоны и на его выходе отображается концентрация в соответствии с Приложением Д.

При достижении концентрации определяемых газов пороговых значений, газоанализатор осуществляет индикацию и сигнализацию в соответствии с таблицей 1.

9.5 Техническое обслуживание

Техническое обслуживание (ТО) производится с целью обеспечения нормальной работы газоанализатора в течение его срока эксплуатации. ТО должно проводиться подготовленными лицами, знающими правила техники безопасности при работе с электроустановками во взрывоопасных зонах, изучившими настоящее РЭ, аттестованными и допущенными к работе с этими изделиями.

Рекомендуемые виды и сроки проведения технического обслуживания:

- внешний осмотр газоанализатора раз в 6 месяцев;
- периодическая проверка работоспособности раз в 6 месяцев;
- очистка корпуса и металлокерамического фильтра газоанализатора ежегодно.

Проверка работоспособности производится газоанализатором автоматически, основные неисправности индицируются в соответствии с таблицей 1.

Установка 0 производится непосредственно после монтажа на объекте перед запуском газоанализатора в эксплуатацию.

9.6 Транспортирование и хранение

Условия транспортирования – по условиям хранения 5(ОЖ4) по ГОСТ 15150-69.

Транспортирование газоанализаторов должно производиться всеми видами транспорта в закрытых транспортных средствах, а так же в отапливаемых герметизированных отсеках самолетов в соответствии с правилами перевозки грузов, действующими на соответствующем виде транспорта.

Газоанализаторы в упаковке предприятия–изготовителя должны храниться на складах поставщика и потребителя в условиях хранения 1 по ГОСТ 15150-69.

В атмосфере помещения для хранения не должно содержаться вредных примесей, вызывающих коррозию.

Газоанализаторы в упаковке предприятия—изготовителя следует хранить на стеллажах.

Расстояние между отопительными устройствами хранилищ и газоанализаторами должно быть не менее 0,5 м.

По истечении срока защиты без переконсервации газоанализаторы должны быть переконсервированы.

Изм.	Лист	№ докум.	Подпись	Дата

Приложение А

Диапазоны измерений объемной доли компонентов и пределы допускаемой основной погрешности ДГС ЭРИС-230

Таблица А.1 – Диапазоны измерений объемной доли компонентов и пределы допускаемой основной погрешности ДГС ЭРИС-230 с оптическим сенсором

Определяемый компонент	Диапазон показаний объемной доли опреде- ляемого компонента	Диапазон измерений объемной доли определяемого компонента	Пределы допускаемой основной абсолютной погрешности
		от 0 до 2,2 %	± 0,13 %
	от 0 до 4,4 %	(от 0 до 50 % НКПР)	(± 3 % НКПР)
Метан (СН ₄)	(от 0 до 100 % НКПР ¹)	от 2,2 до 4,4 %	± (0,04·X+
	(0.0 % 2.00 % 2.00)	(от 50 до 100 % НКПР)	0,042) %
		(01 30 до 100 % ПКП)	$(\pm(0.9\cdot X+1.02) \% \text{ HK}\Pi\text{P})^2$
OTHERN (C.H.)	от 0 до 2,3 %	от 0 до 1,15 %	± 0,07 %
Этилен (C ₂ H ₄)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 3 % НКПР)
		от 0 до 0,85 % (от 0 до	± 0,05 %
П	от 0 до 1,7 %	50 % НКПР)	(± 3 % НКПР)
Пропан (C_3H_8)	(от 0 до 100 % НКПР)	от 0,85 до 1,70 %	± (0,047·X+0,01) %
		(от 50 до 100 % НКПР)	$(\pm(2,35\cdot X+1) \% \text{ HK}\Pi P)^3$
Fymay (C. H.)	от 0 до 1,4 %	от 0 до 0,7 %	± 0,04 %
Бутан (С ₄ Н ₁₀)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 3 % НКПР)
н с (Сп)	от 0 до 1,3 %	от 0 до 0,65 %	± 0,07 %
Изобутан (и-С ₄ Н ₁₀)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % НКПР)
Поттот (С. И.)	от 0 до 1,4 %	от 0 до 0,7 %	± 0,07 %
Пентан (C ₅ H ₁₂)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % НКПР)
Циклопентан	от 0 до 1,4 %	от 0 до 0,7 %	± 0,07 %
(C_5H_{10})	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % НКПР)
	от 0 до 1,0 %	от 0 до 0,5 %	± 0,05 %
Гексан (C ₆ H ₁₄)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
Циклогексан	от 0 до 1,2 %	от 0 до 0,6 %	± 0,06 %
(C_6H_{12})	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
			Лис

АПНС.413216.230-02 РЭ

17

Подпись и дата

Взам. инв. № | Инв. № дубл.

Подписьи дата

Инв. № подл.

Лист

№ докум.

Подпись

Дата

Изм.

Этан (C ₂ H ₆) (от 0 до 100 % НКПР) ((от 0 до 50 % НКПР)	(± 5 % HKПР)
Метанол	от 0 до 2,75 %	от 0 до 2,75 %	± 0,28 %
(CH ₃ OH)	(от 0 до 50 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
Пары	от 0 до 1,4 %	от 0 до 50 %	-
нефтепродуктов ³	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
Бензол (C ₆ H ₆)	от 0 до 1,2 %	от 0 до 0,6 %	± 0,06 %
Del13031 (C ₆ 11 ₆)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
Пропен	от 0 до 2,0 %	от 0 до 1,0 %	± 0,1 %
(пропилен, С ₃ Н ₆)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
Этанол (C ₂ H ₅ OH)	от 0 до 3,1 %	от 0 до 1,55 %	± 0,16 %
Этанол (С ₂ 115ОП)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
Гептан (С ₇ Н ₁₆)	от 0 до 1,1 %	от 0 до 0,55 % (от 0 до	± 0,06 %
Сптан (С71116)	(от 0 до 100 % НКПР)	50 % НКПР)	(± 5 % HKΠP)
Оксид этилена	от 0 до 2,6 %	от 0 до 1,3 %	± 0,13 %
(C_2H_4O)	(от 0 до 100 % НКПР)	(от 0 до 50 % НКПР)	(± 5 % HKΠP)
Диоксид углерода	от 0 до 5,0 %	от 0 до 2,5 %	± 0,125 %
(CO_2)	01 0 до 3,0 %	от 2,5 до 5,0 %	± (0,05·X) %
Примечания			
¹ Значения НКГ	TP для горючих газов и па	аров в соответствии с ГС	ОСТ 30852.19-2002, для
паров нефтепроду	итов - в соответствии с	государственными стан	ндартами на нефтепро-
дукты конкретного	о вида.		
² X- значение о	бъемной доли определяем	юго компонента.	
³ Топливо дизел	пьное по ГОСТ 305-2013,	уайт-спирит по ГОСТ 3	134-78, топливо для ре-
активных двигате.	лей по ГОСТ 10227-86, б	ензин автомобильный в	соответствии с техни-
ческим регламент	том «О требованиях к	автомобильному и ав	виационному бензину,
дизельному и суд	овому топливу, топливу ,	для реактивных двигате.	лей и топочному мазу-
ту», бензин авиац	ионный по ГОСТ 1012-2	013, газовый конденсат,	бензин неэтилирован-

ный по ГОСТ Р 51866-2002, керосин по ТУ 38.71-5810-90.

Дата

Подпись

№ докум.

Диапазон

показаний

объемной доли опреде-

ляемого компонента

от 0 до 2,5 %

Определяемый

компонент

Этан (C_2H_6)

Диапазон

измерений

объемной доли

определяемого

компонента

от 0 до 1,25 %

Пределы

допускаемой

основной

абсолютной

погрешности

 $\pm 0,13 \%$

Подпись и дата дубл. Инв. № Взам. инв. № Подписьи дата

подл.

윋

Изм.

Лист

АПНС.413216.230-02 РЭ

Лист

Таблица А.2 – Диапазоны измерений объемной доли компонентов и пределы допускаемой основной погрешности ДГС ЭРИС-230 с электрохимическим сенсором

Диапазон измерений

объемной доли

Пределы

допускаемой

основной

АПНС.413216.230-02 РЭ

19

Пределы

допускаемой

основной от-

Диапазон

показаний

объемной доли

Определяемый

Подпись и дата

Взам. инв. № | Инв. № дубл.

Подписьи дата

подл.

Инв. №

Изм.

Лист

№ докум.

Подпись

Дата

Определяемыи	ооъемной доли	ооъемной доли	основнои	основнои от-
компонент	определяемого	определяемого	приведенной	носительной
	компонента	компонента	погрешности,	погрешности,
			%	%
Сероводород	от 0 до 50 млн ⁻¹	от 0 до 5 млн ⁻¹	± 20	-
(H_2S)		от 5 до 50 млн ⁻¹	-	± 20
	от 0 до 100 млн ⁻¹	от 0 до 10 млн ⁻¹	± 20	-
		от 10 до 100 млн ⁻¹	-	± 20
Оксид этилена	от 0 до 5 млн ⁻¹	от 0 до 0,5 млн ⁻¹	± 20	-
(C_2H_4O)		от 0,5 до 5 млн ⁻¹	-	± 20
Гидразин	от 0 до 1 млн ⁻¹	от 0 до 0,1 млн ⁻¹	± 30	-
$\left(N_2H_4\right)$		от 0,1 до 1 млн ⁻¹	-	± 30
Хлороводород	от 0 до 30 млн ⁻¹	от 0 до 3млн ⁻¹	± 20	-
(HCL)		от 3 до 30 млн ⁻¹	-	± 20
Фтористый	от 0 до 5 млн ⁻¹	от 0 до 0,1 млн ⁻¹	± 20	-
водород		от 0,1 до 5 млн ⁻¹	-	± 20
(HF)	от 0 до 10 млн ⁻¹	от 0 до 1 млн ⁻¹	± 20	-
		от 1 до 10 млн ⁻¹	-	± 20
Озон	от 0 до 1 млн ⁻¹	от 0 до 0,1 млн ⁻¹	± 20	-
(O_3)		от 0,1 до 1 млн ⁻¹	-	± 20
Силан	от 0 до 50 млн ⁻¹	от 0 до 10 млн ⁻¹	± 20	-
(SiH ₄)		от 10 до 50 млн ⁻¹	-	± 20
Оксид азота	от 0 до 50 млн ⁻¹	от 0 до 5млн ⁻¹	± 20	-
(NO)		от 5 до 50 млн ⁻¹	-	± 20
	от 0 до 250 млн ⁻¹	от 0 до 50млн ⁻¹	± 20	-
		от 50 до 250 млн ⁻¹	-	± 20
Диоксид азота	от 0 до 20 млн ⁻¹	от 0 до 1млн ⁻¹	± 20	-
(NO_2)		от 1 до 20 млн ⁻¹	-	± 20
Аммиак	от 0 до 100 млн ⁻¹	от 0 до 10млн ⁻¹	± 20	-
(NH_3)		от 10 до 100 млн ⁻¹	-	± 20

	Диапазон		Пределы	Пределы
	показаний	Диапазон измерений	допускаемой	допускаемой
Определяемый	объемной доли	объемной доли	основной	основной от-
компонент	определяемого	определяемого	приведенной	носительной
	компонента	компонента	погрешности,	погрешности
			%	%
Аммиак	от 0 до 500 млн ⁻¹	от 0 до 30млн ⁻¹	± 20	-
(NH_3)		от 30 до 500 млн ⁻¹	-	± 20
Аммиак	от 0 до	от 0 до 100млн ⁻¹	± 20	-
(NH3)	1000 млн ⁻¹	от 100 до 1000 млн ⁻¹	-	± 20
Цианистый	от 0 до 10 млн ⁻¹	от 0 до 0,5млн ⁻¹	± 20	-
водород		от 0,5 до 10 млн ⁻¹	-	± 20
(HCN)	от 0 до 15 млн ⁻¹	от 0 до 1млн ⁻¹	± 20	-
		от 1 до 15 млн ⁻¹	-	± 20
	от 0 до 30 млн ⁻¹	от 0 до 5млн ⁻¹	± 20	-
		от 5 до 30 млн ⁻¹	-	± 20
Монооксид	от 0 до 200 млн ⁻¹	от 0 до 15млн ⁻¹	± 20	-
углерода		от 15 до 200 млн ⁻¹	-	± 20
(CO)	от 0 до 500 млн ⁻¹	от 0 до 15млн ⁻¹	± 20	-
		от 15 до 500 млн ⁻¹	-	± 20
	от 0 до	от 0 до 1000млн ⁻¹	± 20	-
	5000 млн ⁻¹	от 1000 до 5000 млн ⁻¹	-	± 20
Хлор	от 0 до 5 млн ⁻¹	от 0 до 0,3 млн ⁻¹	± 20	-
(Cl ₂)		от 0,3 до 5 млн ⁻¹	-	± 20
	от 0 до 15 млн ⁻¹	от 0 до 5 млн ⁻¹	± 20	-
		от 5 до 15 млн ⁻¹	-	± 20
Диоксид серы	от 0 до 5 млн ⁻¹	от 0 до 0,7 млн ⁻¹	± 20	-
(SO_2)		от 0,7 до 5 млн ⁻¹	-	± 20
	от 0 до 15 млн ⁻¹	от 0 до 5 млн ⁻¹	± 20	-
		от 5 до 15 млн ⁻¹	-	± 20
Кислород	от 0 до 30 %	от 0 до 5 %	± 5	-
(O_2)		от 5 до 30 %	-	± 5

Изм.	Лист	№ докум.	Подпись	Дата

Подпись и дата

Взам. инв. № | Инв. № дубл.

Подписьи дата

Инв. № подл.

Приложение Б

Схемы подключения газоанализатора ДГС ЭРИС-230

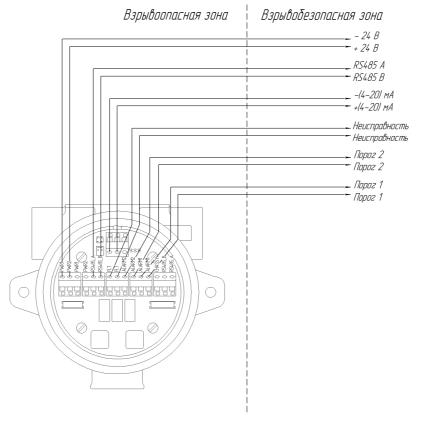


Рисунок Б.1 – 4-проводная схема подключения газоанализатора ДГС ЭРИС-230

Подпись и дата

дубл.

2

Инв.

ષ્ટ્ર

Взам. инв.

Подписьи дата

подл.

Инв. №

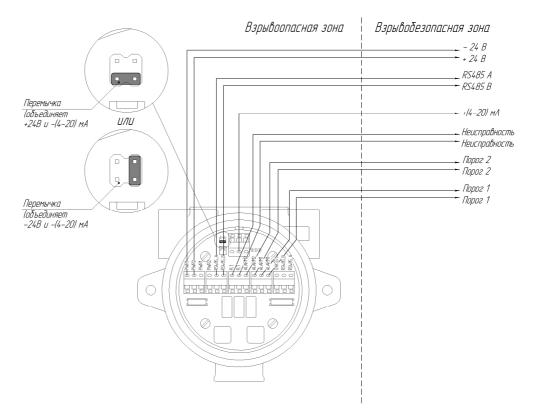
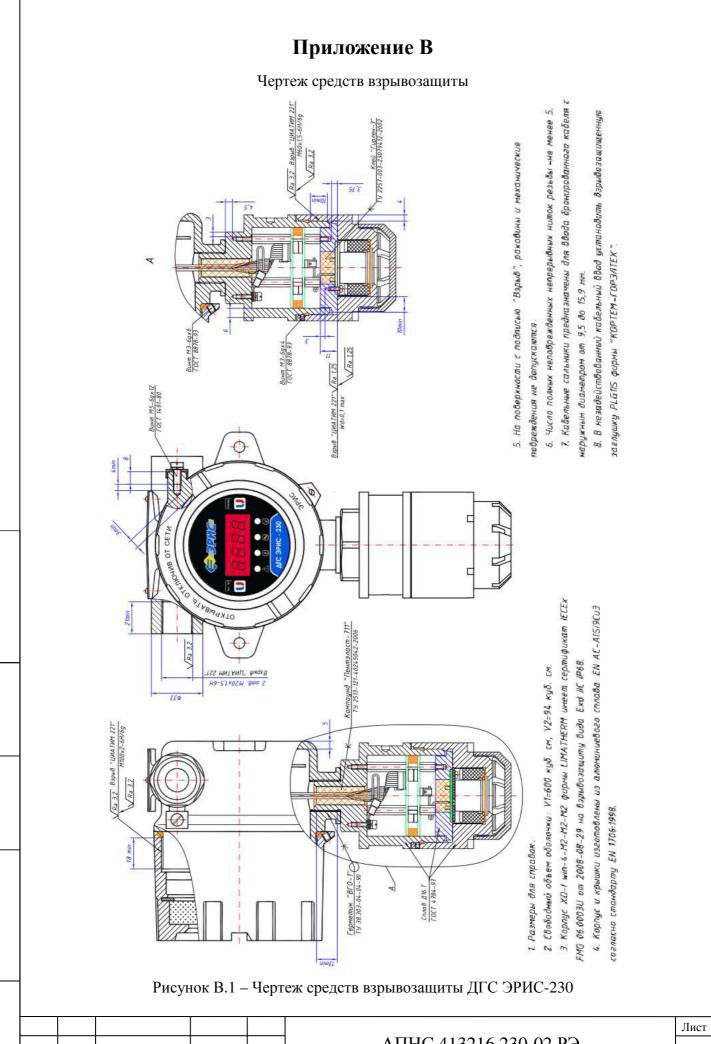



Рисунок Б.2 – 3-проводная схема подключения газоанализатора ДГС ЭРИС-230

			АПНС.413216.230	АПНС.413216.230-02 РЭ	21				
Изм.	Лист	№ докум.	Подпись	Дата		21			

Подпись и дата

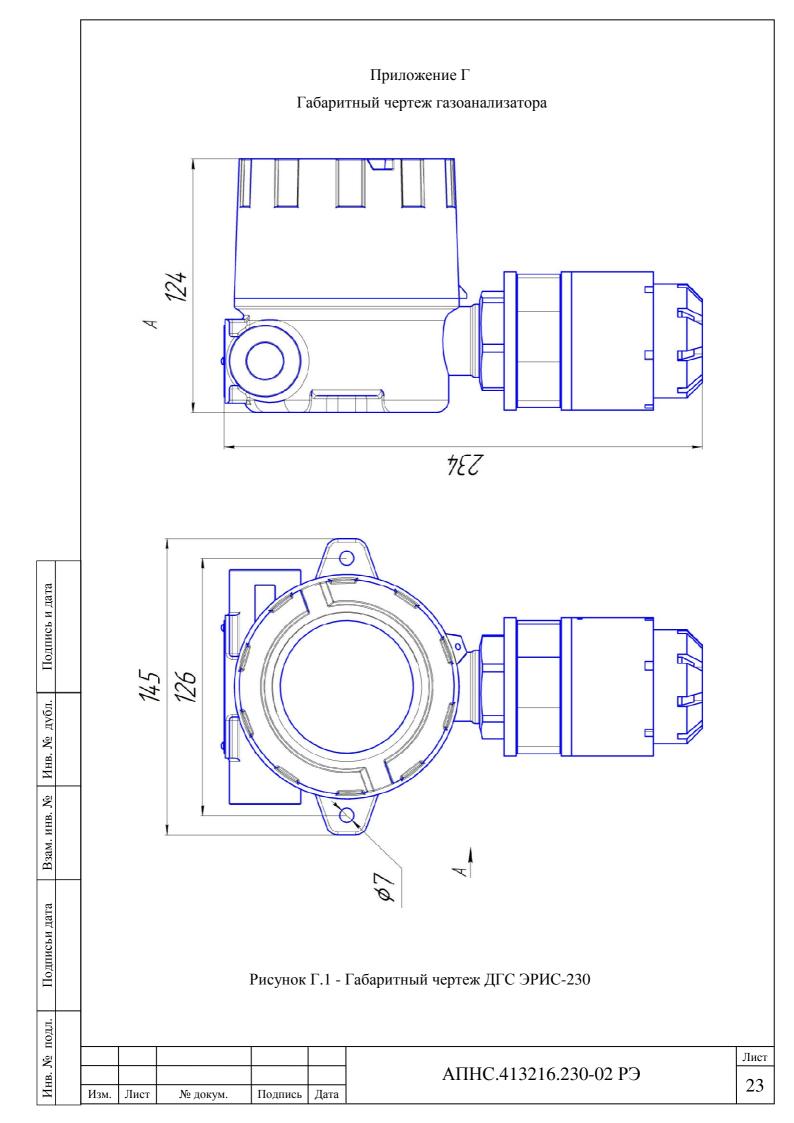
Инв. № дубл.

Взам. инв. №

Подписьи дата

Инв. № подл.

Изм.


Лист

№ докум.

Подпись

Дата

22

Приложение Д

Номинальная статическая функция преобразования

Для модификаций газоанализатора с выводом информации по токовой петле номинальная статическая функция преобразования представлена зависимостью силы электрического тока выходного сигнала от концентрации определяемого компонента:

$$I_{\text{HOM}} = 16 \cdot \frac{C_i}{C_{max}} + 4,\tag{Д.1}$$

где I_{HOM} – выходной ток, мА;

 C_i – измеренная концентрация, % об;

 C_{max} — максимальное значение объемной доли определяемого компонента, соответствующее выходному току 20 мА.

Расчет измеренной концентрации проводится по формуле:

$$C = \frac{|I_i - I_0|}{K},\tag{A.2}$$

где I_i – выходной ток газоанализатора в точке проверки (мА);

 I_0 – начальный выходной ток газоанализатора 4 мА

K – коэффициент преобразования:

$$K = \frac{16 \, mA}{C_{max} - C_{min}},\tag{Д.3}$$

где C_{max} – максимальная концентрация диапазона измерения;

 C_{min} = 0 – минимальная концентрация диапазона измерения.

Подпись и да	
Инв. № дубл.	
Взам. инв. №	
Подписьи дата	
1нв. № подл.	
ž	Ļ
Инв.	ŀ

Изм.	Лист	№ докум.	Подпись	Дата

Приложение Е

Инструкция по монтажу ДГС ЭРИС-230

Инструкция по электрическому монтажу газоанализатораДГС ЭРИС-230:

- Развинтить стопорный винт на верхней крышке газоанализатора;
- Отвинтить верхнюю крышку по резьбе;
- Отвинтить винты крепления лицевой панели и платы индикации, отвести плату индикации в сторону (она повиснет на соединяющем кабеле).
- Соединения проводов кабеля производить в соответствии с Приложением Б и в соответствии с маркировкой на плате и коммутационной колодке (колодка отжимная).

Для подключения цепей интерфейса RS-485 перемычку XN1 переключить:

- в состояние ON для подключения внутренней нагрузки 120 Ом (для газоанализатора, установленного на конце линии RS-485)
 - в состояние OFF для отключения нагрузки 120 Ом.

Для проведения проверки сенсора отдельно, дополнительно:

- отключить разъем шлейф от разъема XP2 на плате питания;
- -выкрутить сенсор из трансмиттера;
- установить заглушку M20x1.5 в отверстие, закрутив ее до упора.

Установка сенсора в обратной последовательности.

После выполнения коммутации в обратном порядке:

- вставить на местоплату индикации, а затем лицевую панель, завинтить винты крепления
 - завинтить верхнюю крышку
 - застопорить стопорный винт

	подпись и дата	
17 Mc	инв. ж дуол.	
Desir was	D3am. NHB. JNS	
	подписьи дата	
III M. mone	ИНВ. № ПОДЛ.	

Изм.	Лист	№ докум.	Подпись	Дата

Приложение Ж

Установка нуля и калибровка газоанализатора

Установка нуля производится непосредственно после монтажа на объекте перед запуском газоанализатора в эксплуатацию, а так же ежегодно при подготовке к проведению поверки.

При проведении работ используют средства, приведенные на рис Ж.1.

Применяемые сокращения:

ГСО-ПГС №2- Государственные стандартные образцы - поверочные газовые смеси с содержанием 50±5% диапазона измерений

ГСО-ПГС №3- Государственные стандартные образцы - поверочные газовые смеси с содержанием 95±5% диапазона измерений;

ПНГ- Поверочный нулевой газ.

Подпись и дата

дубл.

HHB. No

2

Взам. инв.

Подписьи дата

Инв. № подл.

Установка нуля и калибровка чувствительности может производиться тремя способами: магнитом, по интерфейсу RS485 и по интерфейсу HART. Алгоритм установки нуля и калибровки чувствительности магнитом описан ниже.

Методика установки нуля и калибровки чувствительности газоанализатора

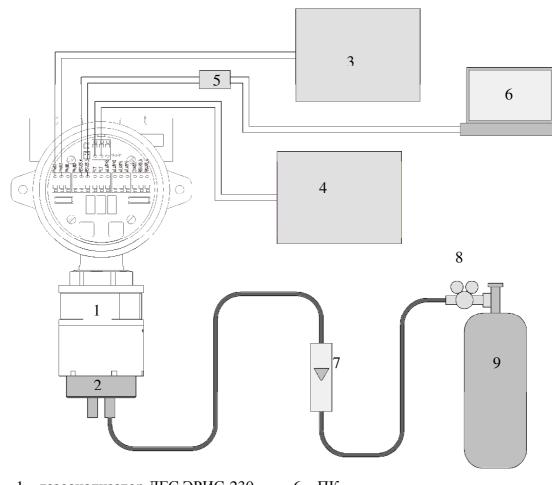
ВНИМАНИЕ! Для перевода газоанализатора в режим установки нуля и калибровки необходимо предварительно удерживать магнит «Уст. 0» в течение не менее 2 сек. При переходе в режим должен мигнуть желтый светодиод.

Для выхода из режима калибровки необходимо удерживать Уст. 0» в течение нем менее 5 сек. Автоматический выход из режиам - при отсутствии срабатывания магнитных датчиков в течение шестидесяти секунд.

Для калибровки по RS-485 эта процедура не требуется.

- 1. Устанавливают на газоанализатор калибровочную насадку.
- 2. Подают ПНГ в течение не менее 1 мин, через 1 мин подносят магнит калибровки к зоне, маркированной как «Уст.0». Срабатывании магнитного датчика подтверждается кратковременным выключением зелёного светодиода индикации. Установка 0 газоанализатора произведена; показания газоанализатора, считываемые в соответствии с Приложением Д, должны установиться в 0.
- 3.Подают ГСО-ПГС №2 и через 1 мин. производят масштабирование концентрации, для чего подносят магнит калибровки к зоне газоанализатора, маркированной как «Калибр». При срабатывании магнитного датчика наблюдается кратковременное выключение зелёного светодиода индикации. Показания газоанализатора должны установиться в значение,

Изм.	Лист	№ докум.	Подпись	Дата


АПНС.413216.230-02 РЭ

Лист

предварительно записанное в регистр концентрации для магнитного масштабирования (см. Приложение Д.

- 4.Подключают ГСО- ПГС №3 и проверяют показания газоанализатора по токовой петле в соответствии с Приложением Д.
- 5. При несоответствии показаний газоанализатора значению концентрации ГСО-ПГС №3 повторяют процедуру установки 0 и масштабирования. При повторном несоответствии показаний газоанализатор подлежит замене и отправке изготовителю для ремонта.

Цепи интерфейса соединить согласно приложению Б.

- 1 газоанализатор ДГС ЭРИС-230
- 2 калибровочная насадка
- 3 источник питания
- 4 амперметр

Подпись и дата

Инв. № дубл.

Взам. инв. №

Подписьи дата

подл.

Инв. №

- 5 преобразователь RS485/USB
- 6 ΠK
- 7 ротаметр РМ–А–0,063ГУ3
- 8 редуктор БКО-25-МГ
- 9 баллон с газом (Γ CO- Π Γ С №2/№3/ Π Π Γ /)

Рисунок Ж.1 – Схема калибровки

Изм.	Лист	№ докум.	Подпись	Дата]

АПНС.413216.230-02 РЭ

Лист

Приложение И

Газы, определяемые сенсорами горючих газов (ИК)

31.Окись пропилена

33. Диоксид углерода

38. Уксусная кислота

40.Пары нефти и нефтепродуктов

39. Формальдегид

34.Окись этилена

35.Пентан

37.Пропан

41.Этанол

42.Этилен

36.Пропилен

32. Монооксид углерода

- 1. Амилен (изомеры)
- 2. Ацетилен
- 3.Ацетон
- 4. Ацетальдегид
- 5. Топливо дизельное по ГОСТ 305-2013
- 6. Уайт-спирит по ГОСТ 3134-78
- 7. Топливо для реактивных двигателей по

ГОСТ 10227-86

- 8. Бензин автомобильный
- 9. Бензин авиационный по ГОСТ 1012-

2013

- 10. Газовый конденсат
- 11. Бензин неэтилированный по ГОСТ Р

51866-2002

- 12. Керосин по ТУ 38.71-5810-90
- 13.Бензол
- 14.Бутан

Подпись и дата

Инв. № дубл.

Взам. инв. №

Подписьи дата

Инв. № подл.

- 15.Бутадиен-1,3
- 16.Бутилен (изомеры)
- 17.Бутанол
- 18.Водород
- 19.Газы углеводородные сжиженные
- 20.Дивинил
- 21.Диоксан
- 22.Диэтиловый эфир
- 23.Изобутан
- 24.Изобутанол
- 25.Изобутилен
- 26.Изопропанол
- 27.Изопрен
- 28.Метанол
- 29.Метан
- 30. Метилэтилкетон, этилметилкетон

Изм.	Лист	№ докум.	Подпись	Дата

АПНС.413216.230-02 Р	Θ
----------------------	----------